Transcriptional regulation of the cellobiose operon of Streptococcus mutans.
نویسندگان
چکیده
The ability of Streptococcus mutans to catabolize cellobiose, a beta-linked glucoside generated during the hydrolysis of cellulose, is shown to be regulated by a transcriptional regulator, CelR, which is encoded by an operon with a phospho-beta-glucosidase (CelA) and a cellobiose-specific sugar phosphotransferase system (PTS) permease (EII(Cel)). The roles of CelR, EII(Cel) components, and certain fructose/mannose-PTS permeases in the transcriptional regulation of the cel locus were analyzed. The results revealed that (i) the celA and celB (EIIB(Cel)) gene promoters require CelR for transcriptional activation in response to cellobiose, but read-through from the celA promoter contributes to expression of the EII(Cel) genes; (ii) the EII(Cel) subunits were required for growth on cellobiose and for transcriptional activation of the cel genes; (iii) CcpA plays little direct role in catabolite repression of the cel regulon, but loss of specific PTS permeases alleviated repression of cel genes in the presence of preferred carbohydrates; and (iv) glucose could induce transcription of the cel regulon when transported by EII(Cel). CelR derivatives containing amino acid substitutions for five conserved histidine residues in two PTS regulatory domains and an EIIA-like domain also provided important insights regarding the function of this regulator. Based on these data, a model for the involvement of PTS permeases and the general PTS proteins enzyme I and HPr was developed that reveals a critical role for the PTS in CcpA-independent catabolite repression and induction of cel gene expression in S. mutans.
منابع مشابه
Cellobiose-Mediated Gene Expression in Streptococcus pneumoniae: A Repressor Function of the Novel GntR-Type Regulator BguR
The human pathogen Streptococcus pneumoniae has the ability to use the carbon- and energy source cellobiose due to the presence of a cellobiose-utilizing gene cluster (cel locus) in its genome. This system is regulated by the cellobiose-dependent transcriptional activator CelR, which has been previously shown to contribute to pneumococcal virulence. To get a broader understanding of the respons...
متن کاملThe Streptococcus mutans GlnR protein exhibits an increased affinity for the glnRA operon promoter when bound to GlnK.
The control of nitrogen metabolism in pathogenic Gram-positive bacteria has been studied in a variety of species and is involved with the expression of virulence factors. To date, no data have been reported regarding nitrogen metabolism in the odontopathogenic species Streptococcus mutans. GlnR, which controls nitrogen assimilation in the related bacterial species, Bacillus subtilis, was assess...
متن کاملThe hdrRM operon of Streptococcus mutans encodes a novel regulatory system for coordinated competence development and bacteriocin production.
The Streptococcus mutans hdrRM operon encodes a novel two-gene regulatory system induced by high cell density. Previous studies identified hdrM as the only known negative regulator of competence development in S. mutans. In the present study, we demonstrated that the HdrRM system bypasses the prototypical competence gene regulators ComC and ComDE in the transcriptional regulation of the compete...
متن کاملRegulation of transcription by SMU.1349, a TetR family regulator, in Streptococcus mutans.
The TetR family of transcriptional regulators is ubiquitous in bacteria, where it plays an important role in bacterial gene expression. Streptococcus mutans, a gram-positive pathogen considered to be the primary etiological agent in the formation of dental caries, encodes at least 18 TetR regulators. Here we characterized one such TetR regulator, SMU.1349, encoded by the TnSmu2 operon, which ap...
متن کاملActivation of the SMU.1882 Transcription by CovR in Streptococcus mutans
In Streptococcus mutans, the global response regulator CovR plays an important role in biofilm formation, stress-tolerance response, and caries production. We have previously shown that CovR acts as a transcriptional repressor by binding to the upstream promoter regions of its target genes. Here, we report that in vivo, CovR activates the transcription of SMU.1882, which encodes a small peptide...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 191 7 شماره
صفحات -
تاریخ انتشار 2009